Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

The J1-J2 Model on the Anisotropic Triangular and the Square Lattice: Similarities and Differences

MPG-Autoren
/persons/resource/persons126833

Schmidt,  B.
Burkhard Schmidt, Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126879

Thalmeier,  P.
Peter Thalmeier, Physics of Correlated Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Schmidt, B., & Thalmeier, P. (2015). The J1-J2 Model on the Anisotropic Triangular and the Square Lattice: Similarities and Differences. Acta Physica Polonica A, 127(2), 324-326. doi:10.12693/APhysPolA.127.324.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0026-CA08-E
Zusammenfassung
The Heisenberg model on a triangular lattice is a prime example for a geometrically frustrated spin system. However most experimentally accessible compounds have spatially anisotropic exchange interactions. As a function of this anisotropy, ground states with different magnetic properties can be realized. On the other hand, the J(1)-J(2) model on the square lattice is a well-known example for frustration induced by competing exchange. The classical phase diagrams of the two models are related in a broad range of the control parameter phi - tan(-1)(J(2)/J(1)). In both cases three different types of ground states are realized, each model having a ferromagnetic and an antiferromagnetic region in the phase diagram, and a third phase with columnar magnetic order for the square lattice and an in general incommensurate spiral structure for the triangular lattice. Quantum effects lift degeneracies in the non-FM phases and lead to additional nonmagnetic regions in the phase diagrams. The contribution of zero point fluctuations to ground state energy, wave vector, and ordered moment is discussed.