English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Direct measurement of the magnetic anisotropy field in Mn-Ga and Mn-Co-Ga Heusler films

MPS-Authors
/persons/resource/persons126789

Ouardi,  Siham
Siham Ouardi, Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126599

Fecher,  Gerhard H.
Gerhard Fecher, Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126601

Felser,  Claudia
Claudia Felser, Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Fowley, C., Ouardi, S., Kubota, T., Yildirim, O., Neudert, A., Lenz, K., et al. (2015). Direct measurement of the magnetic anisotropy field in Mn-Ga and Mn-Co-Ga Heusler films. Journal of Physics D: Applied Physics, 48: 164006, pp. 1-6. doi:10.1088/0022-3727/48/16/164006.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0026-CADD-1
Abstract
The static and dynamic magnetic properties of tetragonally distorted Mn-Ga based alloys were investigated. Static properties are determined in magnetic fields up to 6.5 T using SQUID magnetometry. For the pure Mn1.6Ga film, the saturation magnetisation is 0.36 MA m(-1) and the coercivity is 0.29 T. Partial substitution of Mn by Co results in Mn2.6Co0.3Ga1.1. The saturation magnetisation of those films drops to 0.2 MA m(-1) and the coercivity is increased to 1 T. The time-resolved magneto-optical Kerr effect (TR-MOKE) is used to probe the high-frequency dynamics of Mn-Ga. The ferromagnetic resonance frequency extrapolated to zero-field is found to be 125 GHz with a Gilbert damping, alpha, of 0.019. The anisotropy field is determined from both SQUID and TR-MOKE to be 4.5 T, corresponding to an effective anisotropy density of 0.81 MJ m(-3). Given the large anisotropy field of the Mn2.6Co0.3Ga1.1 film, pulsed magnetic fields up to 60 T are used to determine the field strength required to saturate the film in the plane. For this, the extraordinary Hall effect was employed as a probe of the local magnetisation. By integrating the reconstructed in-plane magnetisation curve, the effective anisotropy energy density for Mn2.6Co0.3Ga1.1 is determined to be 1.23 MJ m(-3).