English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Prospects of molecular imaging in neurology

MPS-Authors
/persons/resource/persons147201

Jacobs,  Andreas H.
Gentherapie und Molekulare Bildgebung, Neurologische Abteilung, Max-Planck-Institut für neurologische Forschung, Managing Director: D. Yves von Cramon, Max Planck Institute for Metabolism Research, Managing Director: Jens Brüning, Max Planck Society;

/persons/resource/persons147346

Winkeler,  A.
Gentherapie und Molekulare Bildgebung, Neurologische Abteilung, Max-Planck-Institut für neurologische Forschung, Managing Director: D. Yves von Cramon, Max Planck Institute for Metabolism Research, Managing Director: Jens Brüning, Max Planck Society;

/persons/resource/persons147188

Heiss,  Wolf-Dieter
Wolf-Dieter Heiss, Emeriti, Max Planck Institute for Metabolism Research, Managing Director: Jens Brüning, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Jacobs, A. H., Winkeler, A., Dittmar, C., Hilker, R., & Heiss, W.-D. (2002). Prospects of molecular imaging in neurology. Journal of Cellular Biochemistry, (Suppl. 39), 98-109.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0026-D888-8
Abstract
Molecular imaging aims towards the non-invasive kinetic and quantitative assessment and localization of biological processes of normal and diseased cells in vivo in animal models and humans. Due to technological advances during the past years, imaging of molecular processes is a rapidly growing field, which has the potential of broad applications in the study of cell biology, biochemistry, gene/protein function and regulation, signal transduction, characterization of transgenic animals, development of new treatment strategies (gene or cell- based) and their successful implementation into clinical application. Most importantly, the possibility to study these parameters in the same subject repeatedly over time makes molecular imaging an attractive technology to obtain reliable data and to safe recourse; for example, molecular imaging enables the assessment of an exogenously introduced therapeutic gene and the related alterations of endogenously regulated gene functions directly in the same subject. Therefore, molecular imaging will have great implications especially when molecular diagnostic and treatment modalities have to be translated from experimental into clinical application. Here, we review the three main imaging technologies, which have been developed for studying molecular processes in vivo, the disease models, which have been studied so far, and the potential future applications.