English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

pH as a Driver for Ammonia-oxidizing Archaea in forest soils

MPS-Authors
/persons/resource/persons62544

Schöning,  Ingo
Soil and Ecosystem Processes, Dr. M. Schrumpf, Department Biogeochemical Processes, Prof. S. E. Trumbore, Max Planck Institute for Biogeochemistry, Max Planck Society;

/persons/resource/persons62545

Schrumpf,  Marion
Soil and Ecosystem Processes, Dr. M. Schrumpf, Department Biogeochemical Processes, Prof. S. E. Trumbore, Max Planck Institute for Biogeochemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Stempfhuber, B., Engel, M., Fischer, D., Neskovic-Prit, G., Wubet, T., Schöning, I., et al. (2015). pH as a Driver for Ammonia-oxidizing Archaea in forest soils. Microbial Ecology, 69, 879-883. doi:10.1007/s00248-014-0548-5.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0026-D0FE-9
Abstract
In this study, we investigated the impact of soil pH on the diversity and abundance of archaeal ammonia oxidizers in 27 different forest soils across Germany. DNAwas extracted from topsoil samples, the amoA gene, encoding ammonia monooxygenase, was amplified; and the amplicons were sequenced using a 454-based pyrosequencing approach. As expected, the ratio of archaeal (AOA) to bacterial (AOB) ammonia oxidizers’ amoA genes increased sharply with decreasing soil pH. The diversity of AOA differed significantly between sites with ultra-acidic soil pH (<3.5) and sites with higher pH values. The major OTUs from soil samples with low pH could be detected at each site with a soil pH <3.5 but not at sites with pH >4.5, regardless of geographic position and vegetation. These OTUs could be related to the Nitrosotalea group 1.1 and the Nitrososphaera subcluster 7.2, respectively, and showed significant similarities to OTUs described from other acidic environments. Conversely, none of the major OTUs typical of siteswith a soil pH >4.6 could be found in the ultra- and extreme acidic soils. Based on a comparison with the amoA gene sequence data from a previous study performed on agricultural soils, we could clearly show that the development of AOA communities in soils with ultra-acidic pH (<3.5) is mainly triggered by soil pH and is not influenced significantly by the type of land use, the soil type, or the geographic position of the site, which was observed for sites with acido-neutral soil pH.