Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Ammonia Decomposition over Iron Phthalocyanine-Based Materials

MPG-Autoren
/persons/resource/persons59060

Tüysüz,  Harun
Research Group Tüysüz, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons58985

Schüth,  Ferdi
Research Department Schüth, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons49087

Zhi,  Lin J.
MPI for Polymer Research, Max Planck Society;

/persons/resource/persons48459

Muellen,  Klaus
Dept. Müllen: Synthetic Chemistry, MPI for Polymer Research, Max Planck Society;

/persons/resource/persons58493

Comotti,  Massimiliano
Research Department Schüth, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Tüysüz, H., Schüth, F., Zhi, L. J., Muellen, K., & Comotti, M. (2015). Ammonia Decomposition over Iron Phthalocyanine-Based Materials. ChemCatChem, 7(9), 1453-1459. doi:10.1002/cctc.201500024.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0026-DB95-0
Zusammenfassung
Iron phthalocyanine-based materials have been used herein as efficient catalysts for the ammonia decomposition reaction. These materials showed high activity, even superior to that showed by the commercial nickel-based catalyst and iron-doped carbon nanotubes, which were used as benchmarks in this study. Catalyst stability under reaction conditions appeared satisfactory, because no deactivation phenomena were observed. The type of the phthalocyanine precursor did not affect the catalytic performance; however, the preparation method had a strong effect. If the resulting material was exposed to the reaction conditions, some structural modification occurred. No clear correlation between phase composition and activity could be established because similar nitrogen content and similar crystalline domains in the sample led to different behaviors. However, the results of extensive characterization suggested that catalytic activities and conversion profiles were most likely dependent on material textural properties and thus on the preparation method used. The accessibility of iron species seems to be limited for catalysts prepared under vacuum. These phenomena are most likely responsible for the activation profile and for the low catalytic activity typical of these materials. In contrast, higher accessibility of iron species, typical of materials prepared under argon, would lead to improved and stable catalytic performance.