English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Lengthening of the stargazin cytoplasmic tail increases synaptic transmission by promoting interaction to deeper domains of PSD-95

MPS-Authors
/persons/resource/persons172910

Opazo,  Patricio
Department: Synapses-Circuits-Plasticity / Bonhoeffer, MPI of Neurobiology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Hafner, A.-S., Penn, A. C., Grillo-Bosch, D., Retailleau, N., Poujol, C., Philippat, A., et al. (2015). Lengthening of the stargazin cytoplasmic tail increases synaptic transmission by promoting interaction to deeper domains of PSD-95. Neuron, 86(2), 475-489. doi:10.1016/j.neuron.2015.03.013.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0026-DCA2-A
Abstract
PSD-95 is a prominent organizer of the postsynaptic density (PSD) that can present a filamentous orientation perpendicular to the plasma membrane. Interactions between PSD-95 and transmembrane proteins might be particularly sensitive to this orientation, as `` long'' cytoplasmic tails might be required to reach deeper PSD-95 domains. Extension/retraction of transmembrane protein C-tails offer a new way of regulating binding to PSD-95. Using stargazin as a model, we found that enhancing the apparent length of stargazin C-tail through phosphorylation or by an artificial linker was sufficient to potentiate binding to PSD-95, AMPAR anchoring, and synaptic transmission. A linear extension of stargazin C-tail facilitates binding to PSD-95 by preferentially engaging interaction with the farthest located PDZ domains regarding to the plasma membrane, which present a greater affinity for the stargazin PDZ-domain-binding motif. Our study reveals that the concerted orientation of the stargazin C-tail and PSD-95 is a major determinant of synaptic strength.