Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Controlling coherent energy flow between collective THz excitations in condensed matter

MPG-Autoren
/persons/resource/persons133847

Nova,  Tobia F.
Quantum Condensed Matter Dynamics, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons133839

Cartella,  Andrea
Quantum Condensed Matter Dynamics, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons133836

Cantaluppi,  Alice
Quantum Condensed Matter Dynamics, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons133775

Först,  Michael
Quantum Condensed Matter Dynamics, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons133811

Cavalleri,  A.
Quantum Condensed Matter Dynamics, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Nova, T. F., Cartella, A., Cantaluppi, A., Mikhaylovskiy, R., Razdolski, I., Först, M., et al. (2014). Controlling coherent energy flow between collective THz excitations in condensed matter. In Ultrafast Phenomena XIX. doi:10.1364/UP.2014.07.Mon.P1.48.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0027-1259-F
Zusammenfassung
Coherent control over the magnetization state of the rare-earth orthoferrite ErFeO3 is achieved by nonlinear lattice excitation via mid-infrared laser pulses. This low-dissipative approach enables new pathways in light-driven manipulation of magnetic materials.