Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Ultrafast momentum imaging of pseudospin-flip excitations in graphene

MPG-Autoren
/persons/resource/persons180731

Aeschlimann,  Sven
Ultrafast Electron Dynamics, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons202145

Krause,  R.
Ultrafast Electron Dynamics, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons180733

Chavez Cervantes,  Mariana
Ultrafast Electron Dynamics, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
International Max Planck Research School for Ultrafast Imaging & Structural Dynamics (IMPRS-UFAST), Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons133777

Bromberger,  H.
Quantum Condensed Matter Dynamics, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons133811

Cavalleri,  A.
Quantum Condensed Matter Dynamics, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons133795

Gierz,  Isabella
Ultrafast Electron Dynamics, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Ergänzendes Material (frei zugänglich)

supplementary_final.pdf
(Ergänzendes Material), 3MB

Zitation

Aeschlimann, S., Krause, R., Chavez Cervantes, M., Bromberger, H., Jago, R., Malić, E., et al. (2017). Ultrafast momentum imaging of pseudospin-flip excitations in graphene. Physical Review B, 96(2): 020301. doi:10.1103/PhysRevB.96.020301.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0027-1267-F
Zusammenfassung
The chiral character of Dirac electrons in graphene manifests itself in a peculiar momentum anisotropy for photo-excited electron-hole pairs. These interband excitations are in fact forbidden along the direction of the light polarization, and are maximum perpendicular to it. This phenomenon gives rise to unconventional hot carrier dynamics that are only partially understood. Here, we use time- and angle-resolved photoemission spectroscopy to investigate the non-thermal physics of such chiral excitations, sampling carrier distributions as a function of energy and in-plane momentum. We rst show that the rapidly-established quasi-thermal electron distribution initally exhibits an azimuth-dependent temperature, consistent with relaxation through collinear electron-electron scattering. Azimuthal thermalization is found to occur only at longer time delays, at a rate that is dependent on the type of static doping. In n-doped graphene, for which photo-excited carriers are generated close to the Fermi level, the anisotropy of the carrier temperature survives far longer than in p-doped graphene. We attribute this to the strong suppression of azimuthal relaxation due to a reduced phase space for optical phonon emission in the n-doped case. These experiments clarify new aspects of hot carrier dynamics that are unique to Dirac materials, with relevance for photo-control experiments and optoelectronic device applications.