Help Privacy Policy Disclaimer
  Advanced SearchBrowse





Efficient Learning-based Image Enhancement : Application to Compression Artifact Removal and Super-resolution


Kim,  Kwang In
Computer Graphics, MPI for Informatics, Max Planck Society;


Theobalt,  Christian       
Computer Graphics, MPI for Informatics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

(Any fulltext), 7MB

Supplementary Material (public)
There is no public supplementary material available

Kim, K. I., Kwon, Y., Kim, J. H., & Theobalt, C.(2011). Efficient Learning-based Image Enhancement: Application to Compression Artifact Removal and Super-resolution (MPI-I-2011-4-002). Saarbrücken: Max-Planck-Institut für Informatik.

Cite as: https://hdl.handle.net/11858/00-001M-0000-0027-13A3-E
Many computer vision and computational photography applications essentially solve an image enhancement problem. The image has been deteriorated by a specific noise process, such as aberrations from camera optics and compression artifacts, that we would like to remove. We describe a framework for learning-based image enhancement. At the core of our algorithm lies a generic regularization framework that comprises a prior on natural images, as well as an application-specific conditional model based on Gaussian processes. In contrast to prior learning-based approaches, our algorithm can instantly learn task-specific degradation models from sample images which enables users to easily adapt the algorithm to a specific problem and data set of interest. This is facilitated by our efficient approximation scheme of large-scale Gaussian processes. We demonstrate the efficiency and effectiveness of our approach by applying it to example enhancement applications including single-image super-resolution, as well as artifact removal in JPEG- and JPEG 2000-encoded images.