Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Why musical memory can be preserved in advanced Alzheimer’s disease

MPG-Autoren

Jacobsen,  Jörn-Henrik
Department Neurophysics, MPI for Human Cognitive and Brain Sciences, Max Planck Society;
Intelligent Systems Lab (ISLA), University of Amsterdam, the Netherlands;

/persons/resource/persons20018

Stelzer,  Johannes
Department Neurophysics, MPI for Human Cognitive and Brain Sciences, Max Planck Society;
Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Denmark;
Max Planck Institute for Biological Cybernetics, Tübingen, Germany;

/persons/resource/persons19648

Fritz,  Tom
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;
Department of Nuclear Medicine, University of Leipzig, Germany;
Institute for Psychoacoustics and Electronic Music, Ghent University, Belgium;

/persons/resource/persons20055

Turner,  Robert
Department Neurophysics, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Jacobsen, J.-H., Stelzer, J., Fritz, T., Chételat, G., La Joie, R., & Turner, R. (2015). Why musical memory can be preserved in advanced Alzheimer’s disease. Brain, 138(8), 2438-2450. doi:10.1093/brain/awv135.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0027-7E58-6
Zusammenfassung
Musical memory is considered to be partly independent from other memory systems. In Alzheimer’s disease and different types of dementia, musical memory is surprisingly robust, and likewise for brain lesions affecting other kinds of memory. However, the mechanisms and neural substrates of musical memory remain poorly understood. In a group of 32 normal young human subjects (16 male and 16 female, mean age of 28.0 ± 2.2 years), we performed a 7 T functional magnetic resonance imaging study of brain responses to music excerpts that were unknown, recently known (heard an hour before scanning), and long-known. We used multivariate pattern classification to identify brain regions that encode long-term musical memory. The results showed a crucial role for the caudal anterior cingulate and the ventral pre-supplementary motor area in the neural encoding of long-known as compared with recently known and unknown music. In the second part of the study, we analysed data of three essential Alzheimer’s disease biomarkers in a region of interest derived from our musical memory findings (caudal anterior cingulate cortex and ventral pre-supplementary motor area) in 20 patients with Alzheimer’s disease (10 male and 10 female, mean age of 68.9 ± 9.0 years) and 34 healthy control subjects (14 male and 20 female, mean age of 68.1 ± 7.2 years). Interestingly, the regions identified to encode musical memory corresponded to areas that showed substantially minimal cortical atrophy (as measured with magnetic resonance imaging), and minimal disruption of glucose-metabolism (as measured with 18F-fluorodeoxyglucose positron emission tomography), as compared to the rest of the brain. However, amyloid-β deposition (as measured with 18F-flobetapir positron emission tomography) within the currently observed regions of interest was not substantially less than in the rest of the brain, which suggests that the regions of interest were still in a very early stage of the expected course of biomarker development in these regions (amyloid accumulation → hypometabolism → cortical atrophy) and therefore relatively well preserved. Given the observed overlap of musical memory regions with areas that are relatively spared in Alzheimer’s disease, the current findings may thus explain the surprising preservation of musical memory in this neurodegenerative disease.