English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

A Framework for Biodynamic Feedthrough Analysis Part II: Validation and Application

MPS-Authors
/persons/resource/persons84279

Venrooij,  J
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83839

Bülthoff,  HH
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Venrooij, J., van Paassen, M., Mulder, M., Abbink, D., Mulder, M., van der Helm, F., et al. (2014). A Framework for Biodynamic Feedthrough Analysis Part II: Validation and Application. IEEE Transactions on Cybernetics, 44(9), 1699-1710. doi:10.1109/TCYB.2014.2336375.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0027-7FCD-9
Abstract
Biodynamic feedthrough (BDFT) is a complex phenomenon, that has been studied for several decades. However, there is little consensus on how to approach the BDFT problem in terms of definitions, nomenclature, and mathematical descriptions. In this paper, the framework for BDFT analysis, as presented in Part I of this dual publication, is validated and applied. The goal of this framework is twofold. First of all, it provides some common ground between the seemingly large range of different approaches existing in BDFT literature. Secondly, the framework itself allows for gaining new insights into BDFT phenomena. Using recently obtained measurement data, parts of the framework that were not already addressed elsewhere, are validated. As an example of a practical application of the framework, it will be demonstrated how the effects of control device dynamics on BDFT can be understood and accurately predicted. Other ways of employing the framework are illustrated by interpreting the results of three selected studies from the literature using the BDFT framework. The presentation of the BDFT framework is divided into two parts. This paper, Part II, addresses the validation and application of the framework. Part I, which is also published in this journal issue, addresses the theoretical foundations of the framework. The work is presented in two separate papers to allow for a detailed discussion of both the frameworkrsquo;s theoretical background and its validation.