English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Conditioned Sounds Enhance Visual Processing

MPS-Authors
/persons/resource/persons84049

Leo,  F
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Research Group Cognitive Neuroimaging, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84112

Noppeney,  U
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Research Group Cognitive Neuroimaging, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Leo, F., & Noppeney, U. (2014). Conditioned Sounds Enhance Visual Processing. PLoS One, 9(9), 1-7. doi:10.1371/journal.pone.0106860.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0027-7FD5-6
Abstract
This psychophysics study investigated whether prior auditory conditioning influences how a sound interacts with visual perception. In the conditioning phase, subjects were presented with three pure tones ( = conditioned stimuli, CS) that were paired with positive, negative or neutral unconditioned stimuli. As unconditioned reinforcers we employed pictures (highly pleasant, unpleasant and neutral) or monetary outcomes (+50 euro cents, minus;50 cents, 0 cents). In the subsequent visual selective attention paradigm, subjects were presented with near-threshold Gabors displayed in their left or right hemifield. Critically, the Gabors were presented in synchrony with one of the conditioned sounds. Subjects discriminated whether the Gabors were presented in their left or right hemifields. Participants determined the location more accurately when the Gabors were presented in synchrony with positive relative to neutral sounds irrespective of reinforcer type. Thus, previously rewarded relative to neutral sounds increased the bottom-up salience of the visual Gabors. Our results are the first demonstration that prior auditory conditioning is a potent mechanism to modulate the effect of sounds on visual perception.