Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Mapping tissue sodium concentration in the human brain: A comparison of MR sequences at 9.4 Tesla

MPG-Autoren
/persons/resource/persons84405

Mirkes,  C
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Romanzetti, S., Mirkes, C., Fiege, D., Celik, A., Felder, J., & Shah, N. (2014). Mapping tissue sodium concentration in the human brain: A comparison of MR sequences at 9.4 Tesla. NeuroImage, 96, 44-53. doi:10.1016/j.neuroimage.2014.03.079.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0027-7FEF-E
Zusammenfassung
Sodium is the second most abundant MR-active nucleus in the human body and is of fundamental importance for the function of cells. Previous studies have shown that many pathophysiological conditions induce an increase of the average tissue sodium concentration. To date, several MR sequences have been used to measure sodium. The aim of this study was to evaluate the performance and suitability of five different MR sequences for quantitative sodium imaging on a whole-body 9.4 Tesla MR scanner. Numerical simulations, phantom experiments and in vivo imaging on healthy subjects were carried out. The results demonstrate that, of these five sequences, the Twisted Projection Imaging sequence is optimal for high quality quantitative sodium imaging, as it combines a number of features which are particularly relevant in order to obtain high quality quantitative images of sodium. These include: ultra-short echo times, efficient k-space sampling, and robustness against off-resonance effects. Mapping of sodium in the human brain is a technique not yet fully explored in neuroscience. Ultra-high field sodium MRI may provide new insights into the pathogenesis of neurological disorders, and may help to develop new and disease-specific biomarkers for the early diagnosis and therapeutic intervention before irreversible brain damage has taken place.