English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Intersegmental Eye-Head-Body Interactions during Complex Whole Body Movements

MPS-Authors
/persons/resource/persons83808

Beykirch,  KA
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84088

Mohler,  BJ
Research Group Space and Body Perception, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83839

Bülthoff,  HH
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

von Lassberg, C., Beykirch, K., Mohler, B., & Bülthoff, H. (2014). Intersegmental Eye-Head-Body Interactions during Complex Whole Body Movements. PLoS One, 9(4), 1-15. doi:10.1371/journal.pone.0095450.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0027-8031-F
Abstract
Using state-of-the-art technology, interactions of eye, head and intersegmental body movements were analyzed for the first time during multiple twisting somersaults of high-level gymnasts. With this aim, we used a unique combination of a 16-channel infrared kinemetric system; a three-dimensional video kinemetric system; wireless electromyography; and a specialized wireless sport-video-oculography system, which was able to capture and calculate precise oculomotor data under conditions of rapid multiaxial acceleration. All data were synchronized and integrated in a multimodal software tool for three-dimensional analysis. During specific phases of the recorded movements, a previously unknown eye-head-body interaction was observed. The phenomenon was marked by a prolonged and complete suppression of gaze-stabilizing eye movements, in favor of a tight coupling with the head, spine and joint movements of the gymnasts. Potential reasons for these observations are discussed with regard to earlier findings and integrated within a functional model.