English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Local and global reference frames for environmental spaces

MPS-Authors
/persons/resource/persons84081

Meilinger,  T
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84170

Riecke,  BE
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83839

Bülthoff,  HH
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

External Resource

Link
(Any fulltext)

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Meilinger, T., Riecke, B., & Bülthoff, H. (2014). Local and global reference frames for environmental spaces. Quarterly Journal of Experimental Psychology, 67(3), 542-569. doi:10.1080/17470218.2013.821145.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0027-8050-B
Abstract
Two experiments examined how locations in environmental spaces, which cannot be overseen from one location, are represented in memory: by global reference frames, multiple local reference frames, or orientation-free representations. After learning an immersive virtual environment by repeatedly walking a closed multisegment route, participants pointed to seven previously learned targets from different locations. Contrary to many conceptions of survey knowledge, local reference frames played an important role: Participants performed better when their body or pointing targets were aligned with the local reference frame (corridor). Moreover, most participants turned their head to align it with local reference frames. However, indications for global reference frames were also found: Participants performed better when their body or current corridor was parallel/orthogonal to a global reference frame instead of oblique. Participants showing this pattern performed comparatively better. We conclude that survey tasks can be solved based on interconnected local reference frames. Participants who pointed more accurately or quickly additionally used global reference frames.