English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

An Experimental Comparison of Haptic and Automated Pilot Support Systems

MPS-Authors
/persons/resource/persons192609

Olivari,  M
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84111

Nieuwenhuizen,  FM
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83839

Bülthoff,  HH
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Olivari, M., Nieuwenhuizen, F., Bülthoff, H., & Pollini, L. (2014). An Experimental Comparison of Haptic and Automated Pilot Support Systems. In AIAA Modeling and Simulation Technologies Conference 2014: held at the SciTech Forum 2014 (pp. 163-173). Red Hook, NY, USA: Curran. doi:10.2514/6.2014-0809.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0027-80BB-E
Abstract
External aids are required to increase safety and performance during the manual control of an aircraft. Automated systems allow to surpass the performance usually achieved by pilots. However, they suffer from several issues caused by pilot unawareness of the control command from the automation. Haptic aids can overcome these issues by showing their control command through forces on the control device. To investigate how the transparency
of the haptic control action in uences performance and pilot behavior, a quantitative comparison between haptic aids and automation is needed. An experiment was conducted in which pilots performed a compensatory tracking task with haptic aids and with automation. The haptic aid and the automation were designed to be equivalent when the pilot was
out-of-the-loop, i.e., to provide the same control command. Pilot performance and control effort were then evaluated with pilots in-the-loop and contrasted to a baseline condition without external aids. The haptic system allowed pilots to improve performance compared with the baseline condition. However, automation outperformed the other two conditions. Pilots control effort was reduced by the haptic aid and the automation in a similar way. In addition, the pilot open-loop response was estimated with a non-parametric estimation method. Changes in the pilot response were observed in terms of increased crossover
frequency with automation, and decreased neuromuscular peak with haptics.