English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The CatSper channel controls chemosensation in sea urchin sperm

MPS-Authors
/persons/resource/persons50598

Timmermann,  Bernd
Sequencing (Head: Bernd Timmermann), Scientific Service (Head: Christoph Krukenkamp), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50399

Kuhl,  Heiner
Sequencing (Head: Bernd Timmermann), Scientific Service (Head: Christoph Krukenkamp), Max Planck Institute for Molecular Genetics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Seifert.pdf
(Publisher version), 2MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Seifert, R., Flick, M., Bönigk, W., Alvarez, L., Trötschel, C., Poetsch, A., et al. (2015). The CatSper channel controls chemosensation in sea urchin sperm. EMBO Journal, 34(3), 379-392. doi:10.15252/embj.201489376.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0027-A647-D
Abstract
Sperm guidance is controlled by chemical and physical cues. In many species, Ca2+ bursts in the flagellum govern navigation to the egg. In Arbacia punctulata, a model system of sperm chemotaxis, a cGMP signaling pathway controls these Ca2+ bursts. The underlying Ca2+ channel and its mechanisms of activation are unknown. Here, we identify CatSper Ca2+ channels in the flagellum of A. punctulata sperm. We show that CatSper mediates the chemoattractant‐evoked Ca2+ influx and controls chemotactic steering; a concomitant alkalization serves as a highly cooperative mechanism that enables CatSper to transduce periodic voltage changes into Ca2+ bursts. Our results reveal intriguing phylogenetic commonalities but also variations between marine invertebrates and mammals regarding the function and control of CatSper. The variations probably reflect functional and mechanistic adaptations that evolved during the transition from external to internal fertilization.