Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Modelling temporal stability of EPI time series using magnitude images acquired with multi-channel receiver coils

There are no MPG-Authors in the publication available
External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

(Publisher version), 859KB

Supplementary Material (public)
There is no public supplementary material available

Hutton, C., Balteau, E., Lutti, A., Josephs, O., & Weiskopf, N. (2012). Modelling temporal stability of EPI time series using magnitude images acquired with multi-channel receiver coils. PLoS One, 7(12): e52075. doi:10.1371/journal.pone.0052075.

Cite as: https://hdl.handle.net/11858/00-001M-0000-0027-AF78-A
In 2001, Krueger and Glover introduced a model describing the temporal SNR (tSNR) of an EPI time series as a function of image SNR (SNR(0)). This model has been used to study physiological noise in fMRI, to optimize fMRI acquisition parameters, and to estimate maximum attainable tSNR for a given set of MR image acquisition and processing parameters. In its current form, this noise model requires the accurate estimation of image SNR. For multi-channel receiver coils, this is not straightforward because it requires export and reconstruction of large amounts of k-space raw data and detailed, custom-made image reconstruction methods. Here we present a simple extension to the model that allows characterization of the temporal noise properties of EPI time series acquired with multi-channel receiver coils, and reconstructed with standard root-sum-of-squares combination, without the need for raw data or custom-made image reconstruction. The proposed extended model includes an additional parameter κ which reflects the impact of noise correlations between receiver channels on the data and scales an apparent image SNR (SNR'(0)) measured directly from root-sum-of-squares reconstructed magnitude images so that κ = SNR'(0)/SNR(0) (under the condition of SNR(0)>50 and number of channels ≤32). Using Monte Carlo simulations we show that the extended model parameters can be estimated with high accuracy. The estimation of the parameter κ was validated using an independent measure of the actual SNR(0) for non-accelerated phantom data acquired at 3T with a 32-channel receiver coil. We also demonstrate that compared to the original model the extended model results in an improved fit to human task-free non-accelerated fMRI data acquired at 7T with a 24-channel receiver coil. In particular, the extended model improves the prediction of low to medium tSNR values and so can play an important role in the optimization of high-resolution fMRI experiments at lower SNR levels.