Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Decoding neuronal ensembles in the human hippocampus

MPG-Autoren
Es sind keine MPG-Autoren in der Publikation vorhanden
Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

Hassabis_2009.pdf
(Verlagsversion), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Hassabis, D., Chu, C., Rees, G., Weiskopf, N., Molyneux, P. D., & Maguire, E. A. (2009). Decoding neuronal ensembles in the human hippocampus. Current Biology, 19(7), 546-554. doi:10.1016/j.cub.2009.02.033.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0027-B2A0-9
Zusammenfassung
BACKGROUND: The hippocampus underpins our ability to navigate, to form and recollect memories, and to imagine future experiences. How activity across millions of hippocampal neurons supports these functions is a fundamental question in neuroscience, wherein the size, sparseness, and organization of the hippocampal neural code are debated. RESULTS: Here, by using multivariate pattern classification and high spatial resolution functional MRI, we decoded activity across the population of neurons in the human medial temporal lobe while participants navigated in a virtual reality environment. Remarkably, we could accurately predict the position of an individual within this environment solely from the pattern of activity in his hippocampus even when visual input and task were held constant. Moreover, we observed a dissociation between responses in the hippocampus and parahippocampal gyrus, suggesting that they play differing roles in navigation. CONCLUSIONS: These results show that highly abstracted representations of space are expressed in the human hippocampus. Furthermore, our findings have implications for understanding the hippocampal population code and suggest that, contrary to current consensus, neuronal ensembles representing place memories must be large and have an anisotropic structure.