English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Self-regulation of regional cortical activity using real-time fMRI: The right inferior frontal gyrus and linguistic processing

MPS-Authors
There are no MPG-Authors in the publication available
External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Rota, G., Sitaram, R., Veit, R., Erb, M., Weiskopf, N., Dogil, G., et al. (2009). Self-regulation of regional cortical activity using real-time fMRI: The right inferior frontal gyrus and linguistic processing. Human Brain Mapping, 30(5), 1605-1614. doi:10.1002/hbm.20621.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0027-B372-9
Abstract
Neurofeedback of functional magnetic resonance imaging (fMRI) can be used to acquire selective control over activation in circumscribed brain areas, potentially inducing behavioral changes, depending on the functional role of the targeted cortical sites. In the present study, we used fMRI-neurofeedback to train subjects to enhance regional activation in the right inferior frontal gyrus (IFG) to influence speech processing and to modulate language-related performance. Seven subjects underwent real-time fMRI-neurofeedback training and succeeded in achieving voluntary regulation of their right Brodmann's area (BA) 45. To examine short-term behavioral impact, two linguistic tasks were carried out immediately before and after the training. A significant improvement of accuracy was observed for the identification of emotional prosodic intonations but not for syntactic processing. This evidence supports a role for the right IFG in the processing of emotional information and evaluation of affective salience. The present study confirms the efficacy of fMRI-biofeedback for noninvasive self-regulation of circumscribed brain activity.