English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Characterization and use of the spent beam for serial operation of LCLS

MPS-Authors
/persons/resource/persons92933

Foucar,  Lutz
Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons92083

Barends,  Thomas
Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons117990

Botha,  Sabine
Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons117878

Doak,  R. Bruce
Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons117928

Nass,  Karol
Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons95189

Schlichting,  Ilme
Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons95345

Shoeman,  Robert L.
Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Max Planck Society;

Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Boutet, S., Foucar, L., Barends, T., Botha, S., Doak, R. B., Koglin, J. E., et al. (2015). Characterization and use of the spent beam for serial operation of LCLS. Journal of Synchrotron Radiation, 22(3), 634-643. doi:10.1107/S1600577515004002.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0027-BF91-5
Abstract
X-ray free-electron laser sources such as the Linac Coherent Light Source offer very exciting possibilities for unique research. However, beam time at such facilities is very limited and in high demand. This has led to significant efforts towards beam multiplexing of various forms. One such effort involves re-using the so-called spent beam that passes through the hole in an area detector after a weak interaction with a primary sample. This beam can be refocused into a secondary interaction region and used for a second, independent experiment operating in series. The beam profile of this refocused beam was characterized for a particular experimental geometry at the Coherent X-ray Imaging instrument at LCLS. A demonstration of this multiplexing capability was performed with two simultaneous serial femtosecond crystallography experiments, both yielding interpretable data of sufficient quality to produce electron density maps