Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Communication through coherence with inter-areal delays

MPG-Autoren
/persons/resource/persons142006

Bastos,  A. M.
Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Max Planck Society;

/persons/resource/persons141639

Vezoli,  J.
Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Max Planck Society;

/persons/resource/persons141609

Fries,  P.
Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Bastos, A. M., Vezoli, J., & Fries, P. (2015). Communication through coherence with inter-areal delays. Current Opinion in Neurobiology, 31, 173-180. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/25460074.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0027-D188-9
Zusammenfassung
The communication-through-coherence (CTC) hypothesis proposes that anatomical connections are dynamically rendered effective or ineffective through the presence or absence of rhythmic synchronization, in particular in the gamma and beta bands. The original CTC statement proposed that uni-directional communication is due to rhythmic entrainment with an inter-areal delay and a resulting non-zero phase relation, whereas bi-directional communication is due to zero-phase synchronization. Recent studies found that inter-areal gamma-band synchronization entails a non-zero phase lag. We therefore modify the CTC hypothesis and propose that bi-directional cortical communication is realized separately for the two directions by uni-directional CTC mechanisms entailing delays in both directions. We review evidence suggesting that inter-areal influences in the feedforward and feedback directions are segregated both anatomically and spectrally.