English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Communication through coherence with inter-areal delays

MPS-Authors
/persons/resource/persons142006

Bastos,  Andre
Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Max Planck Society;
Fries Lab, Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Max Planck Society;

/persons/resource/persons141639

Vezoli,  Julien
Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Max Planck Society;
Fries Lab, Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Max Planck Society;

/persons/resource/persons141609

Fries,  Pascal       
Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Max Planck Society;
Fries Lab, Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
Supplementary Material (public)
There is no public supplementary material available
Citation

Bastos, A., Vezoli, J., & Fries, P. (2015). Communication through coherence with inter-areal delays. Current Opinion in Neurobiology, 31, 173-180. doi:10.1016/j.conb.2014.11.001.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0027-D188-9
Abstract
The communication-through-coherence (CTC) hypothesis proposes that anatomical connections are dynamically rendered effective or ineffective through the presence or absence of rhythmic synchronization, in particular in the gamma and beta bands. The original CTC statement proposed that uni-directional communication is due to rhythmic entrainment with an inter-areal delay and a resulting non-zero phase relation, whereas bi-directional communication is due to zero-phase synchronization. Recent studies found that inter-areal gamma-band synchronization entails a non-zero phase lag. We therefore modify the CTC hypothesis and propose that bi-directional cortical communication is realized separately for the two directions by uni-directional CTC mechanisms entailing delays in both directions. We review evidence suggesting that inter-areal influences in the feedforward and feedback directions are segregated both anatomically and spectrally.