English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

FRET based ratiometric Ca2+ imaging to investigate immune-mediated neuronal and axonal damage processes in experimental autoimmune encephalomyelitis

MPS-Authors
/persons/resource/persons38863

Griesbeck,  Oliver
Research Group: Cellular Dynamics / Griesbeck, MPI of Neurobiology, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Siffrin, V., Birkenstock, J., Luchtman, D. W., Gollan, R., Baumgart, J., Niesner, R. A., et al. (2015). FRET based ratiometric Ca2+ imaging to investigate immune-mediated neuronal and axonal damage processes in experimental autoimmune encephalomyelitis. JOURNAL OF NEUROSCIENCE METHODS, 249, 8-15. doi:10.1016/j.jneumeth.2015.04.005.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0027-D2B7-A
Abstract
Background: Irreversible axonal and neuronal damage are the correlate of disability in patients suffering from multiple sclerosis (MS). A sustained increase of cytoplasmic free [Ca2+] is a common upstream event of many neuronal and axonal damage processes and could represent an early and potentially reversible step. New method: We propose a method to specifically analyze the neurodegenerative aspects of experimental autoimmune encephalomyelitis by Forster Resonance Energy Transfer (FRET) imaging of neuronal and axonal Ca2+ dynamics by two-photon laser scanning microscopy (TPLSM). Results: Using the genetically encoded Ca2+ sensor TN-XXL expressed in neurons and their corresponding axons, we confirm the increase of cytoplasmic free [Ca2+] in axons and neurons of autoimmune inflammatory lesions compared to those in non-inflamed brains. We show that these relative [Ca2+] increases were associated with immune-neuronal interactions. Comparison with existing methods: In contrast to Ca2+-sensitive dyes the use of a genetically encoded Ca2+ sensor allows reliable intraaxonal free [Ca2+] measurements in living anesthetized mice in health and disease. This method detects early axonal damage processes in contrast to e.g. cell/axon morphology analysis, that rather detects late signs of neurodegeneration. Conclusions: Thus, we describe a method to analyze and monitor early neuronal damage processes in the brain in vivo. (C) 2015 Elsevier B.V. All rights reserved.