Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

FRET based ratiometric Ca2+ imaging to investigate immune-mediated neuronal and axonal damage processes in experimental autoimmune encephalomyelitis

MPG-Autoren
/persons/resource/persons38863

Griesbeck,  Oliver
Research Group: Cellular Dynamics / Griesbeck, MPI of Neurobiology, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Siffrin, V., Birkenstock, J., Luchtman, D. W., Gollan, R., Baumgart, J., Niesner, R. A., et al. (2015). FRET based ratiometric Ca2+ imaging to investigate immune-mediated neuronal and axonal damage processes in experimental autoimmune encephalomyelitis. JOURNAL OF NEUROSCIENCE METHODS, 249, 8-15. doi:10.1016/j.jneumeth.2015.04.005.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0027-D2B7-A
Zusammenfassung
Background: Irreversible axonal and neuronal damage are the correlate of disability in patients suffering from multiple sclerosis (MS). A sustained increase of cytoplasmic free [Ca2+] is a common upstream event of many neuronal and axonal damage processes and could represent an early and potentially reversible step. New method: We propose a method to specifically analyze the neurodegenerative aspects of experimental autoimmune encephalomyelitis by Forster Resonance Energy Transfer (FRET) imaging of neuronal and axonal Ca2+ dynamics by two-photon laser scanning microscopy (TPLSM). Results: Using the genetically encoded Ca2+ sensor TN-XXL expressed in neurons and their corresponding axons, we confirm the increase of cytoplasmic free [Ca2+] in axons and neurons of autoimmune inflammatory lesions compared to those in non-inflamed brains. We show that these relative [Ca2+] increases were associated with immune-neuronal interactions. Comparison with existing methods: In contrast to Ca2+-sensitive dyes the use of a genetically encoded Ca2+ sensor allows reliable intraaxonal free [Ca2+] measurements in living anesthetized mice in health and disease. This method detects early axonal damage processes in contrast to e.g. cell/axon morphology analysis, that rather detects late signs of neurodegeneration. Conclusions: Thus, we describe a method to analyze and monitor early neuronal damage processes in the brain in vivo. (C) 2015 Elsevier B.V. All rights reserved.