English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Driving rotational transitions in molecules on a chip.

MPS-Authors
/persons/resource/persons21857

Meek,  S. A.
Research Group of Precision Infrared Spectroscopy, MPI for Biophysical Chemistry, Max Planck Society;

Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Santambrogio, G., Meek, S. A., Abel, M. J., Duffy, L. M., & Meijer, G. (2011). Driving rotational transitions in molecules on a chip. ChemPhysChem, 12(10), 1799-1807. doi:10.1002/cphc.201001007.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0027-D320-5
Abstract
Polar molecules in selected quantum states can be guided, decelerated, and trapped using electric fields created by microstructured electrodes on a chip. Herein we explore how transitions between two of these quantum states can be induced while the molecules are on the chip. We use CO (a3Π1, v=0) molecules, prepared in the J=1 rotational level, and induce the J=2[LEFTWARDS ARROW]J=1 rotational transition with narrow-band sub-THz (mm-wave) radiation. First, the mm-wave source is characterized using CO molecules in a freely propagating molecular beam, and both Rabi cycling and rapid adiabatic passage are examined. Then we demonstrate that the mm-wave radiation can be coupled to CO molecules that are less than 50 μm above the chip. Finally, CO molecules are guided in the J=1 level to the center of the chip where they are pumped to the J=2 level, recaptured, and guided off the chip.