English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Paper

Self-Adjusting Binary Search Trees: What Makes Them Tick?

MPS-Authors
/persons/resource/persons44225

Chalermsook,  Parinya
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

/persons/resource/persons101864

Goswami,  Mayank
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

/persons/resource/persons45021

Mehlhorn,  Kurt
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

/persons/resource/persons79464

Saranurak,  Thatchaphol
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

arXiv:1503.03105.pdf
(Preprint), 710KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Chalermsook, P., Goswami, M., Kozma, L., Mehlhorn, K., & Saranurak, T. (2015). Self-Adjusting Binary Search Trees: What Makes Them Tick? Retrieved from http://arxiv.org/abs/1503.03105.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0027-D3FB-E
Abstract
Splay trees (Sleator and Tarjan) satisfy the so-called access lemma. Many of the nice properties of splay trees follow from it. What makes self-adjusting binary search trees (BSTs) satisfy the access lemma? After each access, self-adjusting BSTs replace the search path by a tree on the same set of nodes (the after-tree). We identify two simple combinatorial properties of the search path and the after-tree that imply the access lemma. Our main result (i) implies the access lemma for all minimally self-adjusting BST algorithms for which it was known to hold: splay trees and their generalization to the class of local algorithms (Subramanian, Georgakopoulos and Mc-Clurkin), as well as Greedy BST, introduced by Demaine et al. and shown to satisfy the access lemma by Fox, (ii) implies that BST algorithms based on "strict" depth-halving satisfy the access lemma, addressing an open question that was raised several times since 1985, and (iii) yields an extremely short proof for the O(log n log log n) amortized access cost for the path-balance heuristic (proposed by Sleator), matching the best known bound (Balasubramanian and Raman) to a lower-order factor. One of our combinatorial properties is locality. We show that any BST-algorithm that satisfies the access lemma via the sum-of-log (SOL) potential is necessarily local. The other property states that the sum of the number of leaves of the after-tree plus the number of side alternations in the search path must be at least a constant fraction of the length of the search path. We show that a weak form of this property is necessary for sequential access to be linear.