English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Frontal–posterior theta oscillations reflect memory retrieval during sentence comprehension

MPS-Authors
/persons/resource/persons19855

Meyer,  Lars
Department Neuropsychology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons19674

Grigutsch,  Maren
Department Neuropsychology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons19643

Friederici,  Angela D.
Department Neuropsychology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Meyer, L., Grigutsch, M., Schmuck, N., Gaston, P., & Friederici, A. D. (2015). Frontal–posterior theta oscillations reflect memory retrieval during sentence comprehension. Cortex, 71, 205-218. doi:10.1016/j.cortex.2015.06.027.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0028-142D-9
Abstract
Successful working-memory retrieval requires that items be retained as distinct units. At the neural level, it has been shown that theta-band oscillatory power increases with the number of to-be-distinguished items during working-memory retrieval. Here we hypothesized that during sentence comprehension, verbal-working-memory retrieval demands lead to increased theta power over frontal cortex, supposedly supporting the distinction amongst stored items during verbal-working-memory retrieval. Also, synchronicity may increase between the frontal cortex and the posterior cortex, with the latter supposedly supporting item retention. We operationalized retrieval by using pronouns, which refer to and trigger the retrieval of antecedent nouns from a preceding sentence part. Retrieval demand was systematically varied by changing the pronoun antecedent: Either, it was non-embedded in the preceding main clause, and thus easy-to-retrieve across a single clause boundary, or embedded in the preceding subordinate clause, and thus hard-to-retrieve across a double clause boundary. We combined electroencephalography, scalp-level time–frequency analysis, source localization, and source-level coherence analysis, observing a frontal-midline and broad left-hemispheric theta-power increase for embedded-antecedent compared to non-embedded-antecedent retrieval. Sources were localized to left-frontal, left-parietal, and bilateral-inferior-temporal cortices. Coherence analyses suggested synchronicity between left-frontal and left-parietal and between left-frontal and right-inferior-temporal cortices. Activity of an array of left-frontal, left-parietal, and bilateral-inferior-temporal cortices may thus assist retrieval during sentence comprehension, potentially indexing the orchestration of item distinction, verbal working memory, and long-term memory. Our results extend prior findings by mapping prior knowledge on the functional role of theta oscillations onto processes genuine to human sentence comprehension.