English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Lithium Insertion into Li2MoO4: Reversible Formation of (Li3Mo)O4 with a Disordered Rock-Salt Structure

MPS-Authors
/persons/resource/persons126756

Mikhailova,  D.
Daria Mikhailova, Physics of Correlated Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126835

Schmidt,  M.
Marcus Schmidt, Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Mikhailova, D., Voss, A., Oswald, S., Tsirlin, A. A., Schmidt, M., Senyshyn, A., et al. (2015). Lithium Insertion into Li2MoO4: Reversible Formation of (Li3Mo)O4 with a Disordered Rock-Salt Structure. Chemistry of Materials, 27(12), 4485-4492. doi:10.1021/acs.chemmater.5b01633.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0028-1219-3
Abstract
During Li-insertion in some complex transition metal molybdates with a NASICON structure, which serve as cathodes in Li-ion rechargeable cells, a formation of a cubic rock-salt-type phase was often detected between 1 and 2 V vs Li+/Li. Detailed information about elemental composition and stability of this compound was missing, and suggestions were made toward a solid solution composed of lithium oxide and two-valence transition metal oxide MO with M a 3d element. In the present work, we showed that Li2MoO4 with a phenacite-type structure without any additional transition metal can reversibly accommodate Li-ions at room temperature with the formation of the NaCl-type compound. Reversible Li-incorporation into the Li2MoO4 structure is accompanied by a reduction of Mo ions and changes in their oxygen coordination. Li-ions are shifted from a tetrahedral to an octahedral site, resulting in the formation of a cubic (Li3Mo)O-4 framework with a random distribution of Li and Mo on one site. This mixed occupancy is remarkable because of significant charge and size differences between Li+ and Mo5+. The novel compound shows Li-deficiency at least up to x(Li) = 0.2, which can be deduced from charge flow in the galvanostatic cycling of the electrochemical cells with a (Li3Mo)O-4 cathode between 1.5 and 2.75 V vs Li+/Li. An increase in the cell potential above 3 V leads to the oxidation of (Li3Mo)O-4 back to Li2MoO4 with phenacite-type structure. The reaction of (Li3Mo)O-4 to Li2MoO4 also occurs upon a short exposure to air.