English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Improving a global model from the boundary layer: Total turbulent energy and the neutral limit Prandtl number

MPS-Authors
/persons/resource/persons127225

Pithan,  Felix
Climate Dynamics, The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society;
IMPRS on Earth System Modelling, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37260

Mauritsen,  Thorsten
Climate Dynamics, The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

jame20172.pdf
(Publisher version), 3MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Pithan, F., Angevine, W., & Mauritsen, T. (2015). Improving a global model from the boundary layer: Total turbulent energy and the neutral limit Prandtl number. Journal of Advances in Modeling Earth Systems, 7, 791-805. doi:10.1002/2014MS000382.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0028-145B-1
Abstract
Model intercomparisons have identified important deficits in the representation of the stable boundary layer by turbulence parametrizations used in current weather and climate models. However, detrimental impacts of more realistic schemes on the large-scale flow have hindered progress in this area. Here we implement a total turbulent energy scheme into the climate model ECHAM6. The total turbulent energy scheme considers the effects of Earth's rotation and static stability on the turbulence length scale. In contrast to the previously used turbulence scheme, the TTE scheme also implicitly represents entrainment flux in a dry convective boundary layer. Reducing the previously exaggerated surface drag in stable boundary layers indeed causes an increase in southern hemispheric zonal winds and large-scale pressure gradients beyond observed values. These biases can be largely removed by increasing the parametrized orographic drag. Reducing the neutral limit turbulent Prandtl number warms and moistens low-latitude boundary layers and acts to reduce longstanding radiation biases in the stratocumulus regions, the Southern Ocean and the equatorial cold tongue that are common to many climate models. Key Points: A TTE closure improves the representation of turbulence in a GCM Reducing the turbulent Prandtl number affects modeled climate © 2015. The Authors.