Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

GTPγS-induced calcium transients and exocytosis in human neutrophils.


Lindau,  M.
Research Group of Nanoscale Cell Biology, MPI for Biophysical Chemistry, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Nüsse, O., & Lindau, M. (1990). GTPγS-induced calcium transients and exocytosis in human neutrophils. Bioscience Reports, 10(1), 93-103.

Cite as: https://hdl.handle.net/11858/00-001M-0000-0028-159B-7
Exocytosis and intracellular free calcium ([Ca2+]in) were simultaneously recorded in single human neutrophils using patch-clamp capacitance measurements and the fura-2 fluorescence ratio method. Intracellular application of guanosine-5′-O(3-thiotriphosphate) (GTPγS) stimulates both exocytosis and a calcium transient. The calcium transient starts to develop after a lag phase of ∼40s and normally appears to trigger the onset of exocytosis indicated by the beginning of the capacitance increase. After this delay [Ca2+]in increases from ∼150 nM to ∼600 nM with a sigmoidal time course. The peak concentration is reached within ∼30 s but the main increase occurs during ∼ 3s. [Ca2+]in subsequently decays within 1–2 min to a level which is close to the resting value. This calcium transient is due to calcium release from inositoltrisphosphate-sensitive intracellular stores. Exocytosis also occurs if the calcium transient is abolished by intracellular EGTA but the lag phase is markedly prolonged. The GTPγS-induced calcium transient is very similar to that observed after stimulation with N-formyl-methionyl-leucyl-phenylalanine. The interplay between guanine nucleotides, [Ca2+]in and exocytosis in neutrophils closely resembles previous results obtained in mast cells suggesting a similar regulation of exocytosis in both cell types.