Abstract
We extend the nonequilibrium dynamical mean field (DMFT) formalism to inhomogeneous systems by adapting the “real-space” DMFT method to Keldysh Green's functions. Solving the coupled impurity problems using strong-coupling perturbation theory, we apply the formalism to homogeneous and inhomogeneous layered systems with strong local interactions and up to 39 layers. We study the diffusion of doublons and holes created by photoexcitation in a Mott insulating system, the time-dependent build-up of the polarization and the current induced by a linear voltage bias across a multilayer structure, and the photoinduced current in a Mott insulator under bias.