Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Using waveform information in nonlinear data assimilation

MPG-Autoren
/persons/resource/persons173613

Parlitz,  Ulrich
Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons173653

Schumann-Bischoff,  Jan
Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Rey, D., Eldridge, M., Morone, U., Abarbanel, H. D. I., Parlitz, U., & Schumann-Bischoff, J. (2014). Using waveform information in nonlinear data assimilation. Physical Review E, 90(6), 062916-1-062916-23. doi:10.1103/PhysRevE.90.062916.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0029-0EDD-E
Zusammenfassung
Information in measurements of a nonlinear dynamical system can be transferred to a quantitative model of the observed system to establish its fixed parameters and unobserved state variables. After this learning period is complete, one may predict the model response to new forces and, when successful, these predictions will match additional observations. This adjustment process encounters problems when the model is nonlinear and chaotic because dynamical instability impedes the transfer of information from the data to the model when the number of measurements at each observation time is insufficient. We discuss the use of information in the waveform of the data, realized through a time delayed collection of measurements, to provide additional stability and accuracy to this search procedure. Several examples are explored, including a few familiar nonlinear dynamical systems and small networks of Colpitts oscillators.