Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Resonance patterns in spatially forced Rayleigh-Bénard convection

MPG-Autoren
/persons/resource/persons173704

Weiss,  Stephan
Laboratory for Fluid Dynamics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons173655

Seiden,  Gabriel
Laboratory for Fluid Dynamics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons173472

Bodenschatz,  Eberhard       
Laboratory for Fluid Dynamics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Weiss, S., Seiden, G., & Bodenschatz, E. (2014). Resonance patterns in spatially forced Rayleigh-Bénard convection. Journal of Fluid Mechanics, 756, 293-308. doi:10.1017/jfm.2014.456.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0029-0F09-F
Zusammenfassung
We report on the influence of a quasi-one-dimensional periodic forcing on the pattern selection process in Rayleigh-Benard convection (RBC). The forcing was introduced by a lithographically fabricated periodic texture on the bottom plate. We study the convection patterns as a function of the Rayleigh number (Ra) and the dimensionless forcing wavenumber (q(f)). For small Ra, convection takes the form of straight parallel rolls that are locked to the underlying forcing pattern. With increasing Ra, these rolls give way to more complex patterns, due to a secondary instability. The forcing wavenumber q(f) was varied in the experiment over the range of 0.6q(c) < q(f) < 1.4q(c), with q(c) being the critical wavenumber of the unforced system. We investigate the stability of straight rolls as a function of q(f) and report patterns that arise due to a secondary instability.