English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Repetitive magnetic stimulation induces plasticity of excitatory postsynapses on proximal dendrites of cultured mouse CA1 pyramidal neurons

MPS-Authors
/persons/resource/persons173619

Priesemann,  Viola
Department of Nonlinear Dynamics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Lenz, M., Platschek, S., Priesemann, V., Becker, D., Willems, L. M., Ziemann, U., et al. (2014). Repetitive magnetic stimulation induces plasticity of excitatory postsynapses on proximal dendrites of cultured mouse CA1 pyramidal neurons. Brain Structure and Function, 1-15. doi:10.1007/s00429-014-0859-9.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0029-0F17-F
Abstract
Repetitive transcranial magnetic stimulation (rTMS) of the human brain can lead to long-lasting changes in cortical excitability. However, the cellular and molecular mechanisms which underlie rTMS-induced plasticity remain incompletely understood. Here, we used repetitive magnetic stimulation (rMS) of mouse entorhinohippocampal slice cultures to study rMS-induced plasticity of excitatory postsynapses. By employing whole-cell patch-clamp recordings of CA1 pyramidal neurons, local electrical stimulations, immunostainings for the glutamate receptor subunit GluA1 and compartmental modeling, we found evidence for a preferential potentiation of excitatory synapses on proximal dendrites of CA1 neurons (2–4 h after stimulation). This rMS-induced synaptic potentiation required the activation of voltage-gated sodium channels, L-type voltage-gated calcium channels and N-methyl-D-aspartate-receptors. In view of these findings we propose a cellular model for the preferential strengthening of excitatory synapses on proximal dendrites following rMS in vitro, which is based on a cooperative effect of synaptic glutamatergic transmission and postsynaptic depolarization.