Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Eliminating Pinned Spiral Waves in Cardiac Monolayer by Far Field Pacing

MPG-Autoren
/persons/resource/persons182791

Shajahan,  T. K.
Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons173574

Krinski,  Valentin
Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons182783

Knyazeva,  Svetlana
Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons173583

Luther,  Stefan
Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Shajahan, T. K., Krinski, V., Knyazeva, S., & Luther, S. (2014). Eliminating Pinned Spiral Waves in Cardiac Monolayer by Far Field Pacing. In 8th Conference of the ESGCO (pp. 151-152). IEEE.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0029-0F7D-D
Zusammenfassung
Fibrillation in the heart often consists of multiple spiral waves of electrical activation in cardiac tissue. To terminate these multiple waves, recently proposed Low Energy Antifibrillation Pacing (LEAP) uses a series of low energy pulses. This achieves an energy reduction of about 80% in animal experiments. To understand the mechanism of LEAP we study the interaction of electric pulses with pinned spiral waves in monolayers of cardiac cells. Optical mapping and controlled placing of heterogeneities allow us to observe the activation dynamics in these monolayers during field pulsing. We show that a pinned wave can be terminated by a series of pulses when one of the pulses falls in the vulnerable window of the pinned spiral.