English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Nonlocal failures in complex supply networks by single link additions

MPS-Authors
/persons/resource/persons173709

Witthaut,  Dirk
Max Planck Research Group Network Dynamics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons173689

Timme,  Marc
Max Planck Research Group Network Dynamics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Witthaut, D., & Timme, M. (2013). Nonlocal failures in complex supply networks by single link additions. The European Physical Journal B, 86: 377. doi:10.1140/epjb/e2013-40469-4.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0029-0FB5-D
Abstract
How do local topological changes affect the global operation and stability of complex supply networks? Studying supply networks on various levels of abstraction, we demonstrate that and how adding new links may not only promote but also degrade stable operation of a network. Intriguingly, the resulting overloads may emerge remotely from where such a link is added, thus resulting in nonlocal failures. We link this counter-intuitive phenomenon to Braess’ paradox originally discovered in traffic networks. We use elementary network topologies to explain its underlying mechanism for different types of supply networks and find that it generically occurs across these systems. As an important consequence, upgrading supply networks such as communication networks, biological supply networks or power grids requires particular care because even adding only single connections may destabilize normal network operation and induce disturbances remotely from the location of structural change and even global cascades of failures.