Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Lagrangian approach to laminar-turbulent interfaces in transitional pipe flow

MPG-Autoren
/persons/resource/persons173667

Song,  Baofang
Max Planck Research Group Complex Dynamics and Turbulence, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons173452

Avila,  Marc
Max Planck Research Group Complex Dynamics and Turbulence, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons173539

Hof,  Björn
Max Planck Research Group Complex Dynamics and Turbulence, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Holzner, M., Song, B., Avila, M., & Hof, B. (2013). Lagrangian approach to laminar-turbulent interfaces in transitional pipe flow. Journal of Fluid Mechanics, 723, 140-162. doi:10.1017/jfm.2013.127.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0029-0FFF-7
Zusammenfassung
Transition in shear flows is characterized by localized turbulent regions embedded in the surrounding laminar flow. These so-called turbulent spots or puffs are observed in a variety of shear flows and in certain Reynolds-number regimes, and they are advected by the flow while keeping their characteristic length. We show here for the case of pipe flow that this seemingly passive advection of turbulent puffs involves continuous entrainment and relaminarization of laminar and turbulent fluid across strongly convoluted interfaces. Surprisingly, interface areas are almost two orders of magnitude larger than the pipe cross-section, while local entrainment velocities are much smaller than the mean speed. Even though these velocities were shown to be small and proportional to the Kolmogorov velocity scale (in agreement with a prediction by Corrsin) in a flow without mean shear before, we find that, in pipe flow, local entrainment velocities are about an order of magnitude smaller than this scale. The Lagrangian method used to study the dynamics of the laminar–turbulent interfaces allows accurate determination of the leading and trailing edge speeds. However, to resolve the highly complex interface dynamics requires much higher numerical resolutions than for ordinary turbulent flows. This method also reveals that the volume flux across the leading edge has the same radial dependence but the opposite sign as that across the trailing edge, and it is this symmetry that is responsible for the puff shape remaining constant.