English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Actin cytoskeleton of chemotactic amoebae operates close to the onset of oscillations

MPS-Authors
/persons/resource/persons173707

Westendorf,  Christian
Laboratory for Fluid Dynamics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons173601

Negrete Jr.,  Jose
Laboratory for Fluid Dynamics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons173453

Bae,  Albert J.
Laboratory for Fluid Dynamics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons173636

Sandmann,  Rabea
Laboratory for Fluid Dynamics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons173472

Bodenschatz,  Eberhard
Laboratory for Fluid Dynamics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons21364

Beta,  Carsten
Laboratory for Fluid Dynamics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Westendorf, C., Negrete Jr., J., Bae, A. J., Sandmann, R., Bodenschatz, E., & Beta, C. (2013). Actin cytoskeleton of chemotactic amoebae operates close to the onset of oscillations. PNAS, 110(10), 3853-3858. doi:10.1073/pnas.1216629110.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0029-1013-1
Abstract
The rapid reorganization of the actin cytoskeleton in response to external stimuli is an essential property of many motile eukaryotic cells. Here, we report evidence that the actin machinery of chemotactic Dictyostelium cells operates close to an oscillatory instability. When averaging the actin response of many cells to a short pulse of the chemoattractant cAMP, we observed a transient accumulation of cortical actin reminiscent of a damped oscillation. At the single-cell level, however, the response dynamics ranged from short, strongly damped responses to slowly decaying, weakly damped oscillations. Furthermore, in a small subpopulation, we observed self-sustained oscillations in the cortical F-actin concentration. To substantiate that an oscillatory mechanism governs the actin dynamics in these cells, we systematically exposed a large number of cells to periodic pulse trains of different frequencies. Our results indicate a resonance peak at a stimulation period of around 20 s. We propose a delayed feedback model that explains our experimental findings based on a time-delay in the regulatory network of the actin system. To test the model, we performed stimulation experiments with cells that express GFP-tagged fusion proteins of Coronin and actin-interacting protein 1, as well as knockout mutants that lack Coronin and actin-interacting protein 1. These actin-binding proteins enhance the disassembly of actin filaments and thus allow us to estimate the delay time in the regulatory feedback loop. Based on this independent estimate, our model predicts an intrinsic period of 20 s, which agrees with the resonance observed in our periodic stimulation experiments.