日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Logarithmic Temperature Profiles in Turbulent Rayleigh-Bénard Convection

MPS-Authors
/persons/resource/persons173445

Ahlers,  Guenter
Laboratory for Fluid Dynamics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons173472

Bodenschatz,  Eberhard       
Laboratory for Fluid Dynamics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons173537

He,  Xiaozhou
Laboratory for Fluid Dynamics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Ahlers, G., Bodenschatz, E., Funfschilling, D., Grossmann, S., He, X., Lohse, D., Stevens, R. J. A. M., & Verzicco, R. (2012). Logarithmic Temperature Profiles in Turbulent Rayleigh-Bénard Convection. Physical Review Letters, 109, 114501-1-114501-5. doi:10.1103/PhysRevLett.109.114501.


引用: https://hdl.handle.net/11858/00-001M-0000-0029-1087-C
要旨
We report results for the temperature profiles of turbulent Rayleigh-Bénard convection (RBC) in the interior of a cylindrical sample of aspect ratio Γ≡D/L=0.50 (D and L are the diameter and height, respectively). Both in the classical and in the ultimate state of RBC we find that the temperature varies as A×ln(z/L)+B, where z is the distance from the bottom or top plate. In the classical state, the coefficient A decreases in the radial direction as the distance from the side wall increases. For the ultimate state, the radial dependence of A has not yet been determined. These findings are based on experimental measurements over the Rayleigh-number range 4×10(12)≲Ra≲10(15) for a Prandtl number Pr≃0.8 and on direct numerical simulation at Ra=2×10(12), 2×10(11), and 2×10(10), all for Pr=0.7.