English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Analysis of synaptic scaling in combination with hebbian plasticity in several simple networks

MPS-Authors
/persons/resource/persons173683

Tetzlaff,  Christian
Max Planck Research Group Network Dynamics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons173563

Kolodziejski,  Christoph
Max Planck Research Group Network Dynamics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons173689

Timme,  Marc
Max Planck Research Group Network Dynamics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Tetzlaff, C., Kolodziejski, C., Timme, M., & Wörgötter, F. (2012). Analysis of synaptic scaling in combination with hebbian plasticity in several simple networks. Frontiers in Computational Neuroscience, 6: 36. doi:10.3389/fncom.2012.00036.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0029-10BF-0
Abstract
Conventional synaptic plasticity in combination with synaptic scaling is a biologically plausible plasticity rule that guides the development of synapses toward stability. Here we analyze the development of synaptic connections and the resulting activity patterns in different feed-forward and recurrent neural networks, with plasticity and scaling. We show under which constraints an external input given to a feed-forward network forms an input trace similar to a cell assembly (Hebb, 1949) by enhancing synaptic weights to larger stable values as compared to the rest of the network. For instance, a weak input creates a less strong representation in the network than a strong input which produces a trace along large parts of the network. These processes are strongly influenced by the underlying connectivity. For example, when embedding recurrent structures (excitatory rings, etc.) into a feed-forward network, the input trace is extended into more distant layers, while inhibition shortens it. These findings provide a better understanding of the dynamics of generic network structures where plasticity is combined with scaling. This makes it also possible to use this rule for constructing an artificial network with certain desired storage properties.