Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Stable and unstable periodic orbits in complex networks of spiking neurons with delays

MPG-Autoren
/persons/resource/persons173590

Memmesheimer,  Raoul-Martin
Max Planck Research Group Network Dynamics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons173689

Timme,  Marc
Max Planck Research Group Network Dynamics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Memmesheimer, R.-M., & Timme, M. (2010). Stable and unstable periodic orbits in complex networks of spiking neurons with delays. Discrete and Continuous Dynamical Systems (Dcds-A), 28, 1555-1588. doi:10.3934/dcds.2010.28.1555.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0029-1257-8
Zusammenfassung
Is a periodic orbit underlying a periodic pattern of spikes in a heterogeneous neural network stable or unstable? We analytically assess this question in neural networks with delayed interactions by explicitly studying the microscopic time evolution of perturbations. We show that in purely inhibitorily coupled networks of neurons with normal dissipation (concave rise function), such as common leaky integrate-and-fire neurons, all orbits underlying non-degenerate periodic spike patterns are stable. In purely inhibitorily coupled networks with strongly connected topology and normal dissipation (strictly concave rise function), they are even asymptotically stable. In contrast, for the same type of individual neurons, all orbits underlying such patterns are unstable if the coupling is excitatory. For networks of neurons with anomalous dissipation ((strictly) convex rise function), the reverse statements hold. For the stable dynamics, we give an analytical lower bound on the local size of the basin of attraction. Numerical simulations of networks with different integrate-and-fire type neurons illustrate our results.