English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Termination of Atrial Fibrillation Using Pulsed Low-Energy Far-Field Stimulation

MPS-Authors
/persons/resource/persons173504

Fenton,  Flavio H.
Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons173583

Luther,  Stefan
Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons173484

Cherry,  Elizabeth M.
Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons173574

Krinsky,  Valentin
Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons173623

Pumir,  Alain       
Laboratory for Fluid Dynamics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons173472

Bodenschatz,  Eberhard       
Laboratory for Fluid Dynamics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Fenton, F. H., Luther, S., Cherry, E. M., Otani, N. F., Krinsky, V., Pumir, A., et al. (2009). Termination of Atrial Fibrillation Using Pulsed Low-Energy Far-Field Stimulation. Circulation, 120, 467-476. doi:10.1161/CIRCULATIONAHA.108.825091.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0029-12D5-E
Abstract
Electrically based therapies for terminating atrial fibrillation (AF) currently fall into 2 categories: antitachycardia pacing and cardioversion. Antitachycardia pacing uses low-intensity pacing stimuli delivered via a single electrode and is effective for terminating slower tachycardias but is less effective for treating AF. In contrast, cardioversion uses a single high-voltage shock to terminate AF reliably, but the voltages required produce undesirable side effects, including tissue damage and pain. We propose a new method to terminate AF called far-field antifibrillation pacing, which delivers a short train of low-intensity electric pulses at the frequency of antitachycardia pacing but from field electrodes. Prior theoretical work has suggested that this approach can create a large number of activation sites ("virtual" electrodes) that emit propagating waves within the tissue without implanting physical electrodes and thereby may be more effective than point-source stimulation.