English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Hydrodynamic Flow-Mediated Protein Sorting on the Cell Surface of Trypanosomes

MPS-Authors
/persons/resource/persons121724

Pfohl,  Thomas
Group Dynamics of biological matter, Department of Dynamics of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons121410

Herminghaus,  Stephan
Group Granular matter and irreversibility, Department of Dynamics of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Engstler, M., Pfohl, T., Herminghaus, S., Boshart, M., Wiegertjes, G., Heddergott, N., et al. (2007). Hydrodynamic Flow-Mediated Protein Sorting on the Cell Surface of Trypanosomes. Cell, 131(3), 279-281. doi:10.1016/j.cell.2007.08.046.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0029-13F3-2
Abstract
The unicellular parasite Trypanosoma brucei rapidly removes host-derived immunoglobulin (Ig) from its cell surface, which is dominated by a single type of glycosylphosphatidylinositol-anchored variant surface glycoprotein (VSG). We have determined the mechanism of antibody clearance and found that Ig-VSG immune complexes are passively sorted to the posterior cell pole, where they are endocytosed. The backward movement of immune complexes requires forward cellular motility but is independent of endocytosis and of actin function. We suggest that the hydrodynamic flow acting on swimming trypanosomes causes directional movement of Ig-VSG immune complexes in the plane of the plasma membrane, that is, immunoglobulins attached to VSG function as molecular sails. Protein sorting by hydrodynamic forces helps to protect trypanosomes against complement-mediated immune destruction in culture and possibly in infected mammals but likewise may be of functional significance at the surface of other cell types such as epithelial cells lining blood vessels.