User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse




Journal Article

Turbulent bubbly flow


Luther,  Stefan
Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available

van den Berg, T. H., Luther, S., Mazzitelli, I. M., Rensen, J. M., Toschi, F., & Lohse, D. (2006). Turbulent bubbly flow. Journal of Turbulence, 7(14), 1-12. doi:10.1080/14685240500460782.

Cite as: http://hdl.handle.net/11858/00-001M-0000-0029-150F-7
The effect of bubbles on fully developed turbulent flow is investigated numerically and experimentally, summarizing the results of our previous papers (Mazzitelli et al., 2003, Physics of Fluids15, L5. and Journal of Fluid Mechanics 488, 283; Rensen, J. et al. 2005, Journal of Fluid Mechanics 538, 153). On the numerical side, we simulate Navier–Stokes turbulence with a Taylor–Reynolds number of Reλ ≈ 60, a large large-scale forcing, and periodic boundary conditions. The point-like bubbles follow their Lagrangian paths and act as point forces on the flow. As a consequence, the spectral slope is less steep as compared to the Kolmogorov case. The slope decrease is identified as a lift force effect. On the experimental side, we do hot-film anemometry in a turbulent water channel with Reλ ≈ 200 in which we have injected small bubbles up to a volume percentage of 3%. Here the challenge is to disentangle the bubble spikes from the hot-film velocity signal. To achieve this goal, we have developed a pattern recognition scheme. Furthermore, we injected microbubbles up to a volume percentage of 0.3%. Both in the counter flowing situation with small bubbles and in the co-flow situation with microbubbles, we obtain a less spectral slope, in agreement with the numerical result.