日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Respiration and parturition affected by conditional overexpression of the Ca2+-activated K+ channel subunit, SK3.

MPS-Authors
/persons/resource/persons95439

Sprengel,  Rolf
Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons93606

Jerecic,  Jasna
Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons95292

Seeburg,  Peter H.
Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Max Planck Society;

External Resource

http://www.sciencemag.org/cgi/reprint/289/5486/1942
(全文テキスト(全般))

http://dx.doi.org/10.1126/science.289.5486.1942
(全文テキスト(全般))

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Bond, C. T., Sprengel, R., Bissonnette, J. M., Kaufmann, W. A., Pribnow, D., Neelands, T., Storck, T., Baetscher, M., Jerecic, J., Maylie, J., Knaus, H., Seeburg, P. H., & Adelman, J. P. (2000). Respiration and parturition affected by conditional overexpression of the Ca2+-activated K+ channel subunit, SK3. Science, 289(5486), 1942-1946. doi:10.1126/science.289.5486.1942.


引用: https://hdl.handle.net/11858/00-001M-0000-0028-2CB9-0
要旨
In excitable cells, small-conductance Ca2+-activated potassium channels (SK channels) are responsible for the slow after-hyperpolarization that often follows an action potential. Three SK channel subunits have been molecularly characterized. The SK3 gene was targeted by homologous recombination for the insertion of a gene switch that permitted experimental regulation of SK3 expression while retaining normal SK3 promoter function. An absence of SK3 did not present overt phenotypic consequences. However, SK3 overexpression induced abnormal respiratory responses to hypoxia and compromised parturition. Both conditions were corrected by silencing the gene. The results implicate SK3 channels as potential therapeutic targets for disorders such as sleep apnea or sudden infant death syndrome and for regulating uterine contractions during labor.