Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Multiconfiguration time-dependent Hartree impurity solver for nonequilibrium dynamical mean-field theory

MPG-Autoren
/persons/resource/persons145197

Balzer,  Karsten
Center for Free-Electron Laser Science, DESY, Notkestraße 85, 22607 Hamburg, Germany;
Theory of Correlated Systems out of Equilibrium, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons196491

Li,  Zheng
Center for Free-Electron Laser Science, DESY, Notkestraße 85, 22607 Hamburg, Germany;
Department of Physics, University of Hamburg, 20355 Hamburg, Germany;
International Max Planck Research School for Ultrafast Imaging & Structural Dynamics (IMPRS-UFAST), Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons140407

Eckstein,  Martin
Center for Free-Electron Laser Science, DESY, Notkestraße 85, 22607 Hamburg, Germany;
Theory of Correlated Systems out of Equilibrium, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

Externe Ressourcen
Volltexte (frei zugänglich)

PhysRevB.91.045136.pdf
(Verlagsversion), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Balzer, K., Li, Z., Vendrell, O., & Eckstein, M. (2015). Multiconfiguration time-dependent Hartree impurity solver for nonequilibrium dynamical mean-field theory. Physical Review B, 91(4): 045136. doi:10.1103/PhysRevB.91.045136.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0028-30B6-2
Zusammenfassung
Nonequilibrium dynamical mean-field theory (DMFT) solves correlated lattice models by obtaining their local correlation functions from an effective model consisting of a single impurity in a self-consistently determined bath. The recently developed mapping of this impurity problem from the Keldysh time contour onto a time-dependent single-impurity Anderson model (SIAM) [C. Gramsch et al., Phys. Rev. B 88, 235106 (2013)] allows one to use wave-function-based methods in the context of nonequilibrium DMFT. Within this mapping, long times in the DMFT simulation become accessible by an increasing number of bath orbitals, which requires efficient representations of the time-dependent SIAM wave function. These can be achieved by the multiconfiguration time-dependent Hartree (MCTDH) method and its multilayer extensions. We find that MCTDH outperforms exact diagonalization for large baths in which the latter approach is still within reach and allows for the calculation of SIAMs beyond the system size accessible by exact diagonalization. Moreover, we illustrate the computation of the self-consistent two-time impurity Green's function within the MCTDH second quantization representation.