English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Synaptic efficacy and reliability of excitatory connections between the principal neurones of the input (layer 4) and output layer (layer 5) of the neocortex

MPS-Authors
/persons/resource/persons92876

Feldmeyer,  Dirk
Department of Cell Physiology, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons95089

Sakmann,  Bert
Department of Cell Physiology, Max Planck Institute for Medical Research, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Feldmeyer, D., & Sakmann, B. (2000). Synaptic efficacy and reliability of excitatory connections between the principal neurones of the input (layer 4) and output layer (layer 5) of the neocortex. The Journal of Physiology - London, 525(1), 31-39. doi:10.1111/j.1469-7793.2000.00031.x.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0028-31A8-9
Abstract
A prerequisite for the understanding of how a cortical column functions is a description of small and defined neuronal circuits consisting of only a few identified neurones. Here we summarise, with particular reference to the barrel cortex, the morphological and physiological properties of two synaptic connections, namely those between pairs of spiny neurones in layer 4 and pairs of pyramidal cells in layer 5. While layer 4 spiny neurones are the cortical input neurones that amplify and relay incoming excitation from the periphery, layer 5 pyramidal cells integrate neuronal activity both within and across cortical columns and subsequently distribute it to both cortical and subcortical brain regions.