English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Structure of the mammalian TSPO/PBR protein.

MPS-Authors
/persons/resource/persons84648

Jaremko,  M.
Department of NMR Based Structural Biology, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons84653

Jaremko,  L.
Department of NMR Based Structural Biology, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons14824

Becker,  S.
Department of NMR Based Structural Biology, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons16093

Zweckstetter,  M.
Research Group of Protein Structure Determination using NMR, MPI for biophysical chemistry, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

2182120.pdf
(Publisher version), 476KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Jaremko, M., Jaremko, L., Jaipuria, G., Becker, S., & Zweckstetter, M. (2015). Structure of the mammalian TSPO/PBR protein. Biochemical Society Transactions, 43(4), 566-571. doi:10.1042/BST20150029.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0028-3A09-D
Abstract
The 3D structure of the 18-kDa transmembrane (TM) protein TSPO (translocator protein)/PBR (peripheral benzodiazepine receptor), which contains a binding site for benzodiazepines, is important to better understand its function and regulation by endogenous and synthetic ligands. We have recently determined the structure of mammalian TSPO/PBR in complex with the diagnostic ligand PK11195 [1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinolinecarboxamide; Jaremko et al. (2014) Science 343, 1363-1366], providing for the first time atomic-level insight into the conformation of this protein, which is up-regulated in various pathological conditions including Alzheimer's disease and Parkinson's disease. Here, we review the studies which have probed the structural properties of mammalian TSPO/PBR as well as the homologues bacterial tryptophan-rich sensory proteins (TspOs) over the years and provide detailed insight into the 3D structure of mouse TSPO (mTSPO)/PBR in complex with PK11195.