Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Detecting fluorescent protein expression and co-localisation on single secretory vesicles with linear spectral unmixing

MPG-Autoren
/persons/resource/persons182316

Nadrigny,  Fabien
Neurogenetics, Max Planck Institute of Experimental Medicine, Max Planck Society;

/persons/resource/persons182202

Hirrlinger,  Petra G.
Neurogenetics, Max Planck Institute of Experimental Medicine, Max Planck Society;

/persons/resource/persons182243

Kirchhoff,  Frank
Neurogenetics, Max Planck Institute of Experimental Medicine, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Nadrigny, F., Rivals, I., Hirrlinger, P. G., Koulakoff, A., Personnaz, L., Vernet, M., et al. (2006). Detecting fluorescent protein expression and co-localisation on single secretory vesicles with linear spectral unmixing. European Biophysics Journal, 35(6), 533-547. doi:10.1007/s00249-005-0040-8.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002A-251E-8
Zusammenfassung
Many questions in cell biology and biophysics involve the quantitation of co-localisation and the interaction of proteins tagged with different fluorophores. However, the incomplete separation of the different colour channels due to the presence of autofluorescence, along with cross-excitation and emission "bleed-through" of one colour channel into the other, all combine to render the interpretation of multi-band images ambiguous. Here we introduce a new live-cell epifluorescence spectral imaging and linear unmixing technique for classifying resolution-limited point objects containing multiple fluorophores. We demonstrate the performance of our technique by detecting, at the single-vesicle level, the co-expression of the vesicle-associated membrane protein, VAMP-2 (also called synaptobrevin-2), linked to either enhanced green fluorescent protein (EGFP) or citrine [a less pH-sensitive variant of enhanced yellow fluorescent protein (EYFP)], in mouse cortical astrocytes. In contrast, the co-expression of VAMP-2-citrine and the lysosomal transporter sialine fused to EGFP resulted in little overlap. Spectral imaging and linear unmixing permit us to fingerprint the expression of spectrally overlapping fluorescent proteins on single secretory organelles in the presence of a spectrally broad autofluorescence. Our technique provides a robust alternative to error-prone dual- or triple colour co-localisation studies.