English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

A shared vesicular carrier allows synaptic corelease of GABA and glycine

MPS-Authors
/persons/resource/persons182487

Wojcik,  Sonja M.
Molecular neurobiology, Max Planck Institute of Experimental Medicine, Max Planck Society;

/persons/resource/persons182104

Brose,  Nils
Molecular neurobiology, Max Planck Institute of Experimental Medicine, Max Planck Society;

/persons/resource/persons182371

Rhee,  Jeong-Seop
Neurophysiology of synapse, Molecular neurobiology, Max Planck Institute of Experimental Medicine, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Wojcik, S. M., Katsurabayashi, S., Guillemin, I., Friauf, E., Rosenmund, C., Brose, N., et al. (2006). A shared vesicular carrier allows synaptic corelease of GABA and glycine. Neuron, 50(4), 575-587. doi:10.1016/j.neuron.2006.04.016.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002A-2451-7
Abstract
The type of vesicular transporter expressed by a neuron is thought to determine its neurotransmitter phenotype. We show that inactivation of the vesicular inhibitory amino acid transporter (Viaat, VGAT) leads to embryonic lethality, an abdominal defect known as omphalocele, and a cleft palate. Loss of Viaat causes a drastic reduction of neurotransmitter release in both GABAergic and glycinergic neurons, indicating that glycinergic neurons do not express a separate vesicular glycine transporter. This loss of GABAergic and glycinergic synaptic transmission does not impair the development of inhibitory synapses or the expression of KCC2, the K+-Cl- cotransporter known to be essential for the establishment of inhibitory neurotransmission. In the absence of Viaat, GABA-synthesizing enzymes are partially lost from presynaptic terminals. Since GABA and glycine compete for vesicular uptake, these data point to a close association of Viaat with GABA-synthesizing enzymes as a key factor in specifying GABAergic neuronal phenotypes.